

Simulatore di Training per la

Navigazione Fluviale

Agostino Bruzzone, Matteo Brandolini, Attilio Rocca,

matteo.brandolini@brbstudio.com www.brbstudio.com agostino@itim.unige.it

st.itim.unige.it

info@dipconsortium.org www.dipconsortium.org

Research Activities

- Development of Logistics
 Training Equipment based on Simulation
- HLA integration for Cooperative Competitive Training
- VV&A Procedures for Training Simulator within Logistics Operator

HLA Federation per Training nella Logistica

La ricerca mira a sperimentare diverse applicazioni per l'impiego della Simulazione Real-Time Distribuita, basata sullo Standard HLA, nel settore della Logistica con particolare attenzione a:

• Definizione delle Procedure Operative

• Formazione degli Operatori

• Sicurezza nell'Handling ed Efficienza

Operativa

MISS BRB

Cocodris Simulatioin Engine enable to reproduce port handling devices, vehicles and

vessels

Real-Time Distributed Simulation

• RESET project is focusing on the development of Real-Time Distributed Simulator that enable the following activities:

BRB

Cooperation among Trainees

Competition among Trainees

Simulation Dynamic Interactions

Cocodris Simulator allows to combine different real and virtual interfaces for improving flexibility and efficient training

MODO OPERATORE

MISS

BRB

ÇID

7/26

Weather Conditions

BRB

Cocodris provides very different weather conditions, including ground characteristics for testing driving ability with fog, snow, rain etc.

RIVER BOATS First Testing

Cocodris allowed to test preliminary developments of river boat virtual environments for simulation of logistics operations

Cocodris Scenario allowed to test Open Issues in each single Customization of the river

RIVER BOATS: Reset Tailoring

collected

information about mapping

and river characteristics

 lunghezza: 0,52 km
 cunetta di fondo: >30 m
 tirante d' acqua: in funzione del livello idrometrico del Po, da 2 m a 6 m
 tirante d' aria: illimitato quota di navigazione: 28 - 34 m sul Imm Sistema Avanconca Biconca di Cremona

- larghezza avanconca: 12 m
 lunghezza utile avanconca: 110 m
 tipo porta avanconca: 110 m
 tipo porta avanconca: 12 m
 lunghezza utile biconca: 127 m
 tipo porta: a scorrimento verticale
 salto: 6,30 m
 tirante d'acqua: da 2,00 a 5,00 m
 tirante d'araic 6,50 m
 tirante d'araic 6,50 m

Tratto Sistema Avanconca Biconca di Cremona - Conca di Acquanegra

- cunetta di fondo: almeno 28 m
 tirante d'acqua: 3,80 4,30 m
 quota di navigazione: 38,30
 lunghezza: 7,256 km
 tirante d'aria: 6,50 m
 note: la prima parte di questo tratto coincide con il porto di Cremona

- banchina verticale: 650 m
- piazzali: 80000 m2
 magazzini: 2000 m2

Maps

the

DIP

11/26

BRB

Print ⊠ Email See Link to this page

Po River Modelling

Data have been combined to create a Synthetic Environment of PO Riveer

MISS BRB

Training Scenario

Port Overview

The Cremona Port has been modeled for providing an effective training framework

Bridge Original Viewpoint

MODO OPERATORE

The Simulator provides multiple views for training purposes

Bridge Update

ODO OPERATORE

Deck Details BRB CIP

The Controls has been model based on the real equipment

ODO OPERATORE

The Virtual **Deck Allows** redefine the Instrumentation based on Specific Needs

Critical Situations

River Navigation

Channels & Manoeuvring

Technical WebService for Coordination

Conclusions

- RESET is an interesting customization of Cocodris Simulation and the application of HLA technology allows today to use this approach in the important sectors of River Navigation
- The Distributed Simulation is still today a very innovative development, allowing to promote simulation in an interactive cooperative environment based on HLA (High Level Architecture) at very low cost
- HLA Simulation is a standard for all the Simulation Projects in USA Military area since 1996 (DIP/DIPTEM is among the first active and most skilled teams worlwide); therefore this approach is still very challenging and few centers/developers are qualified to operate in this area.

References

Development of Innovative Projects Consortium

MISS/DIPTEM

via Opera Pia 15 16145 Genova www.simulationscience.org agostino@itim.unige.it

BRB Studio

Office Tower, Voltri Port 16145 Genova www.brbstudio.com matteo.brandolini@brbstudio.com

