Modelling & Simulation in Naval Framekork

Aldo Zini Cetena S.p.A.

Virtual Prototype

The Virtual Prototype is a Prototype

The actual ship usually is the only prototype of herself

Virtual Prototyping Elements

Why using simulation in Ship Design

in operational scenarios

CONCEPT: Conceive, Design, Test, Train and Operate the Ship on Computer before Cutting Metal

Ship Cabins Digital Mock-up

Ergonomic Assessment

A standard cabin

Head Mounted Display Applications

- Full immersive 3D
 visualization
- Trackers provided for interactive simulations

Bridge Mock-up

Field of view with external scenario

Modelling & Simulation in Naval Framework

Real bridge

Immersive

exploration of

digital mock-up

Positioning and Assembly of Prefabricate Cabins

Onboard Aircraft Manoeuvres

Checking spaces, manoeuvres, times, and collisions.

Cooperative Simulations

Loading/unloading operation with concurrent simulations

Ergonomics

Ergonomics and fields of view for ship deck evaluation

Moving Aircrafts Onboard

Evaluation of forces on the aircraft

Design evaluation of an external elevator

Lifeboats Release Operations

Life boats release operation for checking collisions, forces and crane behaviour.

Circulation and Evacuation on Board

Personnel flow in the self service mess

"Microscopic" evacuation models

Collision Detection

Ingress of the small boat into the wet deck of the amphibious ship for collision detection analysis.

Ship motions for both ships are taken into account.

Simulation of Platform

Ship motion and manoeuvrability behaviour are calculated in real-time and visualised in a 3D synthetic environment

Operation Analysis and Verifications

Behaviour of the landing craft approaching amphibious ship

Operational Verifications

Two ship cooperating

Port traffic

Geographically Distributed HLA Federations

Interoperability study of geographically distant aircraft simulator and a ship simulation using a standard ISDN connection.

International HLA Federation Development

Helicopter take-off and landing operation of on a frigate

Orizzonte Sistemi Navali

- An integrated simulation architecture for the analysis and evaluation of operative effectiveness of naval ships
- A synthetic environment for the study of the behaviour of the ship in different operative scenarios
- A distributed naval scenario simulation to support military ship projects during entire life cycle to reduce costs, times and risks

Approach

- HLA compliance for interoperability purposes and SW reuse
- Evolutionary environment development: federates & federations repository
- ✓ Use of COTS/GOTS
- Real time/ as-fast-as-possible/logical time simulations
- ✓ Interactive environment: Man in the loop

Num Missle: 4 Num Missle: 6 Num Hissle 25, 25, 25, 25, 25, 30, 30, 25, 25, 25, 26, 28

VISION HLA Federation

The next release will integrate the underwater Warfare (UWIS UnderWater Information System)

Some necessary upgrades:

- Submarine models
- Weapon Systems (torpedos)
- Sensors Systems (sonar)
- > ECM: decoys, jammer, air bubbles
- > C2 AAW- ASW

Introduction of Human behaviour in VISION

To simulate scheduled activities during full mission operation and to behave autonomously using Artificial Intelligence during crisis situations

Completely interactive and self adapting AI behaviour

Manikins with default activities scheduled

Virtual Ship Integrated Architecture

Aim

To develop three simulation environments representing the following operations:

- □ Replenishment At Sea
- Craft landing in the internal dock of a LPD Ship
- VTOL vehicles operations on aircraft carrier

Replenishment at Sea

- To simulate Replenishment operations in open seas with different meteorological conditions
- To verify operation constraints (ships speed, distance...)
- To analyse different RAS devices in term of position, operative behaviour, efficiency etc.

Landing Craft operations in a LPD Ship

- To simulate LCU behaviour inside the internal dock
- To evaluate feasibility of tank loading/unloading on the LCU
- To verify operation constraints (LPD ships speed, LCU characteristics...)
- To analyse different internal dock deck configurations

VTOL operations on ship

- To simulate take-off and landing operations
- To evaluate feasibility of operations in different environmental conditions
- To take into account ship manoeuvring behaviour during operation

Future challenges

- Integration of real systems inside the federation
- Integration of other entities simulators
- Interaction among different experts
- •Scalability: use in different design/operation steps
- Human in the loop and ergonomic assessment

Conclusions

- Simulation is generally used
- Interoperability and reuse of existing simulations con be achieved using HLA
- The final users is not yet enough confident in the results as should be
- Further standardization needed for broader reuse and integration among different organizations
- Reuse in different life cycle phases (training...)

