

Orizzonte Sistemi Navali

<complex-block>

System of Systems Engineering Workshop

Integration between main ship design characteristics and naval task effectiveness, during the warship acquisition phase

> on 17th June, 2011 in Genoa

Presentation Outline

Ship Acquisition phase

The traditional approach

New methodology (ASNET) to approach this phase

Expected ASNET impact

ASNET: Application System for Naval Evaluation and Testing

ASNET components

Ship Synthesis Model (SSM)

Operational Evaluation Model (OEM)

Decision making Techniques (i.e. JMP)

SHIP ACQUISITION PHASE

- The traditional approach

approach this phase

- Expected ASNET impact

ASNET COMPONENTS

(OEM)

- Ship Synthesis Model (SSM)

- Operational Evaluation Model

- Decision Making Techniques (JMP)

- New methodology (ASNET) to

COMPANY CONFIDENTIAL

SHIP ACQUISITION PHASE (Early Stage Design – ESD)

Operational needs and the technical inputs/constraints are often examined by separate teams and in different phases of the project.

Orizzonte Sistemi Navali

		7	2						
approach	The tra								
Main Activity	Actors			SHIP ACQUISITION PHASE					
overall picture where the new nav to operate: it includes the politic	Naval Policy –	Scenario and		- The traditional approach					
cal scenario, its characterization ographical areas and the releva	Navy department	MISSIONS	to	dology (ASNET) : s phase	- New metho approach this				
the national point of view				SNET impact	- Expected AS				
the naval policy instructions, a set s for the new naval units in teri	Feasibility Study –	uirements and	Req	PONENTS	ASNET COM				
<i>capabilities and other releva</i> s such as speeds (sustained a ange, & stores period.	Navy department	abilities	Сар	sis Model (SSM)	- Ship Synthe				
			lel	l Evaluation Mod	- Operational				
of the naval requirements documen	Feasibility Design	Design			(OEM)				
p which could meet the requiremen	– Industry		(JMP)	aking Techniques	- Decision Mo				
	- Industry		vali	e Sistemi Na	Orizzonte				

SHIP ACQUISITION PHASE

- The traditional approach
- New methodology (ASNET) to approach this phase
- Expected ASNET impact

ASNET COMPONENTS

- Ship Synthesis Model (SSM)
- Operational Evaluation Model (OEM)
- Decision Making Techniques (JMP)

MISSION STATEMENT OPERATIONAL REQUIREMEN' THREATS, ALLIES, ENVIRONMENT ROGRAM MANAGEMENT EVALUATION ALTERNATIVE MEASURES OF CONCEPT EFFECTIVENESS DESIGNS MEASURES OF PERFORMANCE COST-EFFECTIVENESS IMPOSED OPERATIONAL CONSTRAINTS ASSESSMENT EFFECTIVENESS ASSESSMENT COST OUTPUT TO SYSTEM ESTIMATIO 27 MANAGEMENT TEAM From a seminal paper of W. Hockberger – it is composed by **Ship Synthesis Operational Evaluation** Model Model

New methodology (ASNET)

Important to define the link between SSM and OEM

COMPANY CONFIDENTIAL New methodology (ASNET) SHIP ACQUISITION PHASE - The traditional approach Operational Evaluation Model DESIGN YOUR SUCCESS - New methodology (ASNET) to Application System for **Naval Ship Design** Scenarios, Threats Mission Effectiveness Operational Need approach this phase **Evaluation and Testing** ModelCenter 8.0 Analyses Alternative **Op's Concepts** PHOENIX - Expected ASNET impact ("Ways") **Operational Evaluation** Requirements / Model **Commercial Optimizer** Capability Gap* **ASNET COMPONENTS** Technic and a second Alternative Synthesis Model 1.0 Systems Concept Imp "Means - Ship Synthesis Model (SSM) tries to solve **DISCOVER JMP* 9** - Operational Evaluation Model (OEM) **Decision making Techniques Ship Synthesis Model** - Decision Making Techniques (JMP)

Orizzonte Sistemi Navali

SHIP ACQUISITION PHASE

- The traditional approach
- New methodology (ASNET) to approach this phase
- Expected ASNET impact

ASNET COMPONENTS

- Ship Synthesis Model (SSM)
- Operational Evaluation Model (OEM)
- Decision Making Techniques (JMP)

Application System for Naval Evaluation and Testing

An attempt to involve operational experts, naval architects and combat system designers into a unique environment.

Orizzonte Sistemi Navali

Orizzonte Sistemi Navali

Ship Synthesis Model – SSM 1/2

SHIP ACQUISITION PHASE **From Requirements Analysis** - Endurance Speed **Command &** - The traditional approach Control - New methodology (ASNET) to approach this phase Armament Balance design in terms of Geometry Energy, Services, Weight, Area, (L,B,T,...) Volume, speed and stability - Expected ASNET impact **Organic Units** These aspects **ASNET COMPONENTS** are lot Joined Power SHIP SYNTHESIS MODEL - Ship Synthesis Model (SSM) (Propulsion, Electrical,...) tries to verify adequacy of the design to Design parameters the requirements for a feasible ship - Operational Evaluation Model (OEM) based on Shipyard background experience - Decision Making Techniques (JMP) **Orizzonte Sistemi Navali Commitment and Flexibility**

NATO UNCLASSIFIED (COMPANY CONFIDENTIAL)

Ship Synthesis Model – SSM (State of art) 2/2

SHIP ACQUISITION PHASE

- The traditional approach
- New methodology (ASNET) to approach this phase
- Expected ASNET impact
- **ASNET COMPONENTS**
- Ship Synthesis Model (SSM)
- Operational Evaluation Model (OEM)
- Decision Making Techniques (JMP)

Orizzonte Sistemi Navali

11

Research Program sponsored by ONR & OSN

SHIP ACQUISITION PHASE

- The traditional approach
- New methodology (ASNET) to approach this phase
- Expected ASNET impact

ASNET COMPONENTS

- Ship Synthesis Model (SSM)
- Operational Evaluation Model (OEM)

ONR & OSN activity

Design space exploration

			DSH	ŒΖ	SAR	MIO	AAW sd	ASuW
Min	Max							
22	40	Vsust.						
1000	2000	Endurance						
13	23	Mast H.						
SAM1	SAM2	SAM						
Y	N	MCG						
SSM1	SSM2	SSM						
Y	N	HELO						
f(Subsystems)	stems)	Crew Num.						
		Length						
		Beam						
		Draft						
		Cx						
		Ср						
		Displ.						
		Error in Power						
		Error in Endurance						
		MOEEEZ						
		MOEMIO						
		MOE AAW sd						
		MOE ASuW						
50	200	Distance to Base EEZ						
25	100	Distance to SAR Loc						
EEZ1	EEZ2	Area of Operations for MIO						
Type 1	Type 2	Type of llegal Vessel MIO						
Sub	Super	Type of Threat Missile						
FP1	FP2	Type of Incoming Fast Patrol Boat						

SAM: Sea Sparrow & MICA SSM: MARTE & Exocet

SHIP ACQUISITION PHASE

- The traditional approach
- New methodology (ASNET) to approach this phase
- Expected ASNET impact

ASNET COMPONENTS

- Ship Synthesis Model (SSM)
- Operational Evaluation Model (C

ONR & OSN activity

Commitment and Flexibility

16

Link between SSM and OEM (in progress)

www.orizzontesn.it

Orizzonte Sistemi Navali